Journal of Organometallic Chemistry, 142 (1977) 357-374 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

RHODIUM(I) PHOSPHINE COMPLEXES CONTAINING BIDENTATE UNSATURATED THIO LIGANDS

I. SYNTHESIS AND CHARACTERISATION

A.W. GAL *, J.W. GOSSELINK and F.A. VOLLENBROEK

Department of Inorganic Chemistry, Catholic University of Nijmegen, Toernooiveld, Nijmegen (The Netherlands)

(Received June 14th, 1977)

Summary ·

The rhodium(1) complexes $(Ph_3P)_2Rh(L-L')$, in which L--L' is an unsaturated chelate coordinating via L = S and L' = N, O, P or S, have been prepared from RhCl(PPh₃)₃ by two routes.

Direct substitution of one Ph₃P and Cl⁻ by the chelate anion gives $(Ph_3P)_2Rh_{Ph_2PC(S)S}$ (L = S, L' = P). Oxidative addition of an N-H bond followed by reductive elimination of HCl results in $(Ph_3P)_2Rh[Me_2NC(S)NC(S)NMe_2]$ (L = S, L' = S), $(Ph_3P)_2Rh[PhNC(S)NMe_2]$ (L = S, L' = N), $(Ph_3P)_2Rh[Ph_2PC(S)NPh)$ (L = S, L' = P) and $(Ph_3P)_2Rh[Ph_2P(O)C(S)NPh]$ (L = S, L' = O).

Reaction of the complexes $(Ph_3P)_2Rh(L-L')$ with CO gives $(CO)(Ph_3P)Rh(L-L')$ with CO *trans* to the chelate donor atom with the lowest *trans*-influence. Pt(PPh_3)_4 reacts with Me_2NC(S)N(H)C(S)NMe_2 and HN(Ph)C(S)PPh_2, respectively, to give H(Ph_3P)Pt[Me_2NC(S)NC(S)NMe_2] (L = S, L' = S) and H(Ph_3P)-Pt[Ph_2PC(S)NPh] (L = S, L' = P).

The coordinating atoms and their configurations have been assigned by IR ³¹P NMR and ¹H NMR. Some trend in IR and ³¹P NMR paramaters are discussed.

Introduction

We are interested in the variation of chemical and spectroscopic properties of the rhodium(I) complexes $(Ph_3P)_2Rh(L-L')$ as a function of the unsaturated chelate (L-L'). We have thus synthesized a number of such complexes containing the formally uninegative ligands (I-VI), which can all be regarded as derived from the dithiocarbamate ion II, for which S,S-coordination has been reported in A(Ph_3P)Rh[SC(S)NMe_2] * (A = Ph_3P or CO) [1]. No rhodium(I) complexes

^{*} To avoid confusion: except for I, the coordinating atoms L and L' of the chelate L-L' are placed in the formulas immediately before and after the central carbon atom, with the non-coordinating atom further away from the carbon atom. e.g. in A(Ph_3P)Rh[SC(S)NMe_2] both S atoms coordinate to the metal centre and N of NMe_2 does not.

TABLI	e 1 Ytical Values and Molecular Weights ^a								
	the second s	¢		-				• • • • • • • • • • • • • • • • • • •	
No.	Compound	Colour	Analysis ()	Pound (caled.) ("te))	-			
			2%	11%	N%	હીજ	S.F.	Mol, wt.	
1	(Ph ₃ P) ₂ Hh[Me ₂ NC(S)NG(S)NMe ₂]	orange-red	59.1	5,2	, 6,4		 8'8	762 0	
	•		(61.7)	(5.2)	(2,1)		(7.8)	(817)	
VII	(Ph3P)2Rh[SC(S)NMr2]	orange	62,0	0'0	1,8				
A III	(PhaPhaRh PhNCCS)NMA-1, CAHz	onuto	(62,7) 68.5	(4,0) 5,3	(1,9) 3.0		5		
			(69,2)	(10)	(3.2)		(3.6)		
١٧٨	(Ph ₃ P) ₂ Rh[Ph ₂ PC(S)S]	brick-red	65,9	4.8		9,9	6.9	600 °	
			(66.3)	(4,5)		(10.4)	(1.2)	(888)	
٨A	(Ph3P)2Rh[Ph2PC(S)NPh]	orange-yellow	70,0	5,1	1.1	9,5	3,2	915 °	
			(69.7)	(4,8)	(1.6)	(8,0)	(3.4)	(847)	
۸I۸	(Ph ₃ P) ₂ Rh[Ph ₂ P(O)C(S)NPh]	red	68,4	4,7	1.5	3,3	9,6		
			(68.5)	(4.7)	(1.5)	(3,3)	(0.0)		
13	(CO)(Ph ₃ P)Rh[Me ₂ NC(S)NC(S)NMe ₂]	orange-yellow	52,0	4.8	7.0				
			(51.5)	(4.7)	(1.2)				
11B	(CO)(Ph3P)Rh[SC(S)NMe2] · (H3CC(O)CH3)	yellow	53.3	4.7	2.5				
			(62,6)	(4.8)	(2.5)			-	
11113	(CO)(Ph3P)Rh[PhNC(S)NMe2] · C6H6	yellow	63.2	5.1	4.1	4.8	4.9	686 ⁰	
			(62,8)	(2,0)	(4.3)	(4.7)	(4.9)	(650)	
IVB	(CO)(Ph3P)Rh[Ph2PC(S)S]	par	58.5	3.8		9.5	9,8	627 ^c	
			(58.7)	(3,8)		(8.4)	(8'6)	(654)	
VB	(CO)(Ph3P)Rh[Ph2PC(S)NPh]	yellaw	63,8	4,3	1.9	8.2	4.4	76.4 ^c	
			(0.4.0)	(4.2)	(2.0)	(8,0)	(4,5)	(213)	
VIB	(CO)(Ph3P)Rh[Ph2P(O)C(S)NPh]	yellow	62.5	4.3	1,8	8,5	4,3	718 ^c	
			(62.6)	(1.1)	(6.1)	(8.5)	(4.4)	(130)	
ΛII	H(Ph ₃ P)Pt[Me ₂ NC(S)NC(S)NMe ₂]	pale-yellow	44.3	4.4	6.4				
			(44.4)	(1.4)	(6.5)				
VIII	H(Ph ₃ P)Pt[Ph ₂ PC(S)NPh]	pale-yellow	56.9	4.2	1.7				
	-		(57.1)	(.1.0)	(1,8)				
d Osmo	metrically under N2-atmosphere, $^{\rm b}$ in C6116, $^{\rm c}$ in C11	2Cl2.					* *		

(I) N, N, N', N'-tetramethyldithiobiuretato; (II) N, N-dimethyldithiocarbamato; (III) N, N-dimethyl-N'-phenyl-thioureido; (V) P, P-diphenylphosphinodithioformato; (V) P, P-diphenylphosphino-thioformamido; (VI) P, P-diphenyl-N-phenylphosphinylthioformamido.

containing the other ligands were previously known. I is expected to coordinate via S,S in a six-membered chelate ring [41]. III has been found NPh,S-coordinated to rhodium(III) [13,16]. In view of the reported tendency of IV towards P,S-coordination in case of a "soft" metal centre [35], P,S-coordination is expected for IV and P,S- or P,NPh-coordination for V. In VI, the oxidized form of V, S,NPh-coordination in a four-membered chelate ring as in III seems possible, but S,O- or NPh,O-coordination in a five-membered chelate ring is also conceivable. The coordinating atoms L,L' have been assigned in both the $(Ph_3P)_2$ -Rh(L-L') and $(CO)(Ph_3P)Rh(L-L')$ which result from the reaction of $(Ph_3P)_2$ -Rh(L-L') with CO. The complexes $H(Ph_3P)Pt(L-L')$ with L-L' being I and V, respectively, are also described.

Experimental

Reactions were performed at room temperature using Schlenk apparatus. Solutions for IR and NMR measurements were prepared in a glove-box. ¹H NMR spectra were recorded on a Varian T-60 and a Bruker WH-90-FT NMR spectrometer. ³¹P {¹H} NMR spectra were recorded on a Varian XL-100-FT at 40.5 MHz using the deuterated solvent as internal lock.

C, H and N analysis for the air-stable complexes were performed at the microanalytical department of this university. Other elemental analysis and molecular weight determinations were carried out by Alfred Bernhardt, Microanalytisches Laboratorium, Elbach über Engelskirchen, W.-Germany. The analytical results are given in Table 1. The molecular weight determination of the air-sensitive complexes $(Ph_3P)_2Rh(L-L')$ are probably less accurate.

Starting materials

 $NaS_2CNMe_2 \cdot 2H_2O(II)$ (reagent grade) was obtained from Fluka. $Me_2NC(S)$ - $N(H)C(S)NMe_2$ (I-H) [2], HN(Ph)C(S)NMe_2 (III-H) [3], HN(Ph)C(S)PPh_2 (V-H) [4], HN(Ph)C(S)P(O)Ph_2 (VI-H) [5], RhCl(PPh_3)_3 [6] and Pt(PPh_3)_4 [7] were prepared by published procedures. RhCl(CO)(PPh_3)_2 was prepared from RhCl-(PPh_3)_3 and CO.

 $KS_2CPPh_2 \cdot 1$ dioxane (IV) was prepared by a modification of a published procedure [8]: the turbid red-brown THF solution obtained by addition of $KPPh_2$ to CS_2 in dry THF was diluted with an equal volume of dry ether and left for two days. The very air-sensitive yellow precipitate was centrifuged off and the residual solution evaporated in vacuo. On stirring the resulting red oil with dry 1,4-dioxane the orange-yellow $KS_2CPPh_2 \cdot 1$ dioxane precipitated. Synthesis of the complexes $(Ph_3P)_2Rh(L-L')$

A. Oxidative addition of N-H bond

 $(Ph_3P)_2Rh[Me_2NC(S)NC(S)NMe_2]$ (IA). Addition of 0.4 mmol of I-H to a stirred solution of 0.4 mmol RhCl(PPh_3)_3 in 10 ml of benzene * resulted in an orange solution and some orange precipitate. After 30 min a small excess of Et₃N was added to give a red solution. Stirring was continued for 15 min and the precipitate of Et₃NHCl was filtered off. Dilution with n-hexane and cooling gave orange-red crystals of IA. $\tau(NMe_2)(CD_2Cl_2)$ 7.00(12)s ppm **. By analogous procedures the following complexes were obtained:

 $(Ph_3P)_2Rh[PhNC(S)NMe_2] \cdot C_6H_6$ (IIIA). The red-orange solution from RhCl-(PPh_3)_3 and III-H changed to orange upon addition of Et_3N and orange crystals of IIIA were isolated. $\tau(NMe_2)(CD_2Cl_2)$ 7.48(6)s ppm. The presence of C₆H₆ was confirmed by the ¹H NMR spectrum.

 $(Ph_3P)_2Rh[Ph_2PC(S)NPh]$ (VA). The initial bright-red solution changed to orange-yellow upon addition of Et₃N, and orange-yellow crystals of VA were isolated.

 $(Ph_3P)_2Rh[Ph_2P(O)C(S)NPh]$ (VIA). The initial dark-red solution changed to intense bright-red upon addition of Et₃N. VIA was obtained as red crystals.

B. Substitution of Cl and $Ph_{3}P$.

 $(Ph_3P)_2Rh[SC(S)NMe_2]$ (IIA). The complex was prepared by a modification of a literature procedure [1]. 0.4 mmol of II was added to a stirred solution of RhCl(PPh_3)_3 in 20 ml of acetone for 45 min. The spontaneously formed orange precipitate was washed with water (removal of NaCl), ethanol and n-hexane. Prepared in this way the complex was analytically pure and needed not to be chromatographed as reported by O'Connor et al. [1]. τ (NMe₂)(CD₂Cl₂) 6.90(6) s ppm.

 $(Ph_3P)_2Rh[Ph_2PC(S)S]$ (IVA). 0.4 mmol of IV was stirred with 0.4 mmol RhCl(PPh_3)_3 in 15 ml of dry acetone during 15 h. The resulting brick-red precipitate of IVA was washed with water, ethanol and n-hexane.

All the complexes IA—VIA are moderately air-sensitive in the solid state and very air-sensitive in solution.

Synthesis of the complexes $(CO)(Ph_3P)Rh(L-L')$

A. Oxidative addition of N-H bond.

 $(CO)(Ph_3P)Rh[Me_2NC(S)NC(S)NMe_2]$ (IB). 0.2 mmol of I-H was added to a stirred solution of 0.2 mmol RhCl(CO)(PPh_3)₂ in 10 ml of benzene. After 30 min, addition of a small excess of Et₃N resulted in the precipitation of Et₃NHCl. Filtration, dilution with n-hexane and cooling gave orange-yellow crystals of IB. τ (NMe₂)(CD₂Cl₂) 6.87(12) s(br) ppm.

 $(CO)(Ph_3P)Rh[Ph_2PC(S)NPh]$ (VB) and $(CO)(Ph_3P)Rh[Ph_2P(O)C(S)NPh]$ (VIB). These complexes were prepared similarly. RhCl(CO)(PPh_3)₂ failed to react with III-H in benzene in the presence of Et₃N, even under reflux.

^{*} At the concentrations shown not all the RhCl(PPh₃)₃ immediately dissolved.

^{**} Number of protons (from intensity ratio to Ph-resonances) between parenthesis; s, singlet; br, broad.

B. Substitution of Ph₃P by CO

 $(CO)(\dot{Ph}_3P)Rh[Me_2NC(S)NC(S)NMe_2]$ (IB). CO was passed through a solution of 0.2 mmol of IA in 10 ml of benzene. The solution turned orange-yellow in a few seconds. Dilution with n-hexane and cooling gave orange crystals of IB. $\tilde{\tau}(NMe_2)(CD_2Cl_2)$ 6.87(12) s(br) ppm.

In an analogous procedure (CO)(Ph₃P)Rh[PhNC(S)NMe₂] · C₆H₆ (IIIB) τ (NMe₂)(CD₂Cl₂) 7.27(6) s ppm, (CO)(Ph₃P)Rh[Sh₂PC(S)S] (IVB), (CO)(Ph₃P)-Rh[Ph₂PC(S)NPh] (VB) and (CO)(Ph₃P)Rh[Ph₂P(O)C(S)NPh] (VIB) were prepared. IIIB is very soluble in benzene and difficult to precipitate and. The presence of C₆H₆ in IIIB was confirmed by ¹H NMR.

 $(CO)(Ph_3P)Rh[SC(S)NMe_2]$ - acetone (IIB). 0.4 mmol of II and 0.4 mmol RhCl(PPh₃)₃ were stirred in acetone. After 30 min NaCl was filtered off. On stirring for another 10 min an orange precipitate of $(Ph_3P)_2Rh[SC(S)NMe_2]$ appeared. On passing CO through the solution it turned from orange to yellow and the $(Ph_3P)_2Rh[SC(S)NMe_2]$ redissolved. Concentration of the solution and addition of n-hexane gave a yellow precipitate of IIB. $\tau(NMe_2)(CD_2Cl_2)$ 6.70(3)s, 6.86(3)s ppm. The presence of acetone was confirmed by ¹H NMR. (O'Connor et al. [1] reported a brown colour for this complex.)

The complexes IB-VIB are stable in the air for days as solids, and no airsensitivity was found for the solutions.

Synthesis of the complexes $H(Ph_3P)Pt(L-L')$

 $H(Ph_3P)Pt[Me_2NC(S)NC(S)NMe_2]$ (VII). 0.2 mmol Pt(PPh_3), and 0.2 mmol of I-H were stirred in 20 ml of benzene for 24 h. Addition of n-hexane to the pale-yellow solution resulted in a pale-yellow precipitate of VII. $\tau(NMe_2)(CD_2Cl_2)$ 6.68(6) s(br) and 6.84(6) s ppm.

H(Ph_P)Pt[Ph_PC(S)NPh] (VIII) was prepared similarly.

Under the same conditions Pt(PPh₃)₄ did not react with III-H.

Results and discussion

A. Synthetic routes; breaking of the N-H bond

Schemes 1–3 summarize the synthetic routes used for the rhodium(I) complexes. In the reaction of I-H, III-H, V-H and VI-H with RhCl(PPh₃)₃ formal oxidative addition of the N–H bond to rhodium(I) takes place. The initial change of colour upon interaction with the N–H containing molecules can be ascribed to the formation of a hydridochlororhodium(III) complex, which undergoes reductive elimination of HCl upon addition of Et₃N. When no Et₃N was present in the reaction of I-H with RhCl(PPh₃)₃ a mixture of products was isolated which displayed an absorption in the IR at 2132 cm⁻¹ (CsJ), probably ν (Rh–H). We did not attempt to isolate the intermediates for III-H, V-H and VI-H.

Whereas RhCl(PPh₃)₃ reacts with all the molecules containing N—H bonds, RhCl(CO)(PPh₃)₂ reacts with I-H, V-H and VI-H, but not with III-H. Similarly Pt(PPh₃)₄ reacts with I-H and V-H and not with III-H *. If HCl is passed through a solution of (CO)(PPh₃)Rh(L-L') with L-L' being I, III or V in the presence

^{*} The reaction of VI-H with Pt(PPh3)4 has not yet been investigated.

of one equivalent of PPh₃, RhCl(CO)(PPh₃)₂ (characterised by IR) is precipitated immediately. This suggests a rapid equilibrium, as represented by eq. 1.

 $\begin{array}{rcl} \operatorname{RhCl}(\operatorname{CO})(\operatorname{PPh}_3)_2 & (\operatorname{CO})(\operatorname{Ph}_3\operatorname{P})_n\operatorname{RhHCl}(\operatorname{L-L'}) & (\operatorname{CO})(\operatorname{Ph}_3\operatorname{P})\operatorname{Rh}(\operatorname{L-L'}) \\ & + & = & + & = & (1) \\ & & & & \\ \operatorname{L-L'-H} & (2-n)\operatorname{PPh}_3 & & & & +\operatorname{HCl} + \operatorname{PPh}_3 \\ & & & & (\operatorname{L-L'} = \operatorname{I}, \operatorname{III or V}) & & & & (n = 1 \text{ or } 2) \end{array}$

It seems that interaction of III-H with $RhCl(CO)(PPh_3)_2$ does not give the intermediate hydridochlororhodium(III) complex.

SCHEME 2. Synthesis and structures of the rhodium(I) complexes from RhCl(CO)(PPh_3)2.

SCHEME 3. Synthesis and structures of the platinum(II) complexes.

reactions the reaction mechanism must be rather complicated, because after the initial oxidative addition of the N—H bond, substitution of PPh₃ and rearrangement to S.S-coordination for VII and (P,S) coordination for VIII, must occur, as visualised for VIII (Scheme 4).

SCHEME 4. Formation of H(Ph₃P)Pt[Ph₂PC(S)NPh] (possible reaction scheme).

Other examples of oxidative addition of N-H bonds to platinum(0) and palladium(0) have been reported. Oxidative addition of cyclic imides such as succinimide to Pt(PPh₃)₄ gave trans-(Ph₃P)₂PtH (succinimido) [9]. However with Pd(PPh₃)₄, trans-(Ph₃P)₂Pd (succinimido)₂ was obtained [9]. Cis- and trans-(Ph₃P)₂M(ArNNAr)₂ (M = Pt and Pd) with monodentate triazenido groups are formed in the reaction of HN(Ar)NNAr with M(PPh₃)₄ [10,11]. These differences demonstrate the subtlety of the factors governing product formation. Oxidative addition of N-H bonds to rhodium is less well documented. The reaction of RhCl(PPh₃)₃ with HN(Ar)NNAr is reported to give (Ph₃P)RhCl-(ArNNAr)₂ [11]. In our case we did not detect any bis-complexes (Ph₃P)RhCl-(L-L')₂.

B. Spectra and structures of rhodium complexes

IR spectra

The assigned chelate frequencies in the IR of CH_2Cl_2 solutions between 2000 and 700 cm⁻¹ are shown in Tables 2A and 2B. We assign the intense absorption at ~1505 cm⁻¹ in Ia, B to $\nu(C \oplus NMe_2)$. A number of complexes $M^{II}[Me_2NC(S)-NC(S)NMe_2]_2$ have been reported recently [12] but no IR absorptions were given. The chelate absorptions assigned for IIA, B and IVA, B are as expected for S,S-coordinated S₂CNMe₂⁻ [13–15] and S,NPh-coordinated PhNC(S)NMe₂⁻ [13,16]. The two chelate absorptions assigned for IVA, B nearly coincide with

INFRARED ABSORPTIONS AND CH2Cl2; NaCl-cells)	NNDISSV (IENTS C	JF ∧(Ph ₃ P)Rh(L-L') WITH A = CO	, Pli ₃ Pi COI	MPARISON		1)2Pt(1~1 	[.]] ⁺ (200()700 cm ⁻¹ In	_	
Complex	No.	<	и(со) ^и	Chelate a	bsorptions	:							
				р(СшЕ) ^а	٩	4d−N	N-Mc	NMc		N-Me			
Ph3P, , S ~ NMe2 Ph3P, 'S ~ NMe2 Ph3P' 'S ~ NMe2	p		•	1 52 Gvs	P(C::'NMe2)		1400vW	1376s	13185	1129s	912vw(br)		
L A, LS -≺NMe2 A, RS -≺NMe2 Ph3P ^c `S -≺NMe2	18 1	CO Ph ₃ P	19764	1512vs 1499vs	P(C:::NMr2) P(C:::NMr2)		1396vw 1392vw	1367s 1368s	1316s 1318s	1123s 1127s	916w 916w		
[^{Ph} 3P、、 ^S 、NMe2]Br ⁻ [Ph3P、1、S、NMe2]Br ⁻	ч			1570vs ^c	\(C==NMe_2)			1402s ^c	1234w ^c	1161m ^c	000 c		
^A 、 _R , ^S 、 _{WMe2}	811 811	co Ph ₃ P	1973vs	1 638vs 1 625vs	P(C:::NMe2) P(C:::NMe2)			1400s 1396s	1251m ^c 1258m ^c	1152m 1146s	970m 970m		
Ph ^A , Rh ^N PhyP ² S Me ₂	111A 111A	CO Ph ₃ P	19 70vs	1 549 cs 1 537 vs	ע(CanNuc2) ע ערבינאאריב) אין	1601m 1603m	1422(sh) 1418(sh)	13645 13575	1205m 1201m	11 08m 11 09m	952w 952w	847w 840w	787w 787w

1.

t

Ì

•

; 1111 į ----ł ļ ļ

TABLE 2A

TABLE 2B	;	:	•					•		
Complex	No.	<	и(СО) ^д	Chelate a $\mu(C=E)^{a}$	bsorptions b	(0=d)µ	p(PCS)			
A, Rh, P, S Ph ₃ P, Y, S		co Ph ₃ P	1984vs	1094vs 1082vs	µ(C=S) ₽(C=S)		8.42 m 8.47 m			
A, Rh, S, NPh Ph ₃ P, S, S, NPh	VB VA	CO Ph ₃ P	1976vs	1672vs 1666vs	µ(C=N) µ(C=N)		930n 934m	803w 802w		
^{- Ph2} Ph3P, 20-P A A S A NPA	VIB VIA	co Ph ₃ P	1980vs	1533s 1611s	ν(C== N) ν(C== N)	1130s 1135s	968m 968m	802m 802w		
^a ν (GE) and ν (GO) have been determine ponent; ν (G $=$ the same for the exo	d to J l	cm ⁻¹ b artial d	ouble bon	ing the IR d. ^c In Cs	spectrum, ^b r(C I, ^d Synthesis of	- =E) is norn these comp	al mode with lexes to be p	in stretching of ublished.	f exacyclic double bond as the main of	-40

TA	RI.	Е	з
			~

CHARACTERISTIC ABSORPTIONS FOR P.S-COORDINATION OF PhaPCSa

Complex	Refer- ence	Coordi- nation mode	v(C=S)	v(PCS)	ras (CS ₂)	ν _s (CS ₂)	Solvent
(Ph3P)2Rh[Ph2PC(S)S]		P,S	1082vs	847m			CH ₂ Cl ₂
(CO)(Ph3P)Rh[Ph2PC(S)S]		P.S	1094vs	842m			CH ₂ Cl ₂
Ni[Ph2PC(S)S]2	17	P,S	1091vs	830s			KBr
Mn[SC(S)PPh2]2 · EtOH	18	S,S			981s	891m	KBr
KSC(S)PPh2 - dioxane		_			1000 s	853m	KBr

 ν (C=S) and ν (PCS₂) for P,S-coordinated S₂CPPh₂⁻ in Ni[Ph₂PC(S)S]₂ [17]. They are clearly different from the two absorptions of S,S-coordinated S₂CPPh₂⁻ in Mn[SC(S)PPh₂] - EtOH assigned as ν_{as} (CS₂) and ν_{s} (CS₂) [18]. This confirms P,S-coordination in IVA, B (Table 3).

Analogous to IVA, B we assign in VA, B the absorptions at ~1560 and ~930 cm⁻¹ to ν (C=N) and ν (PCS) respectively. In support of our assignment, ν (C=S) and ν_{as} (SCS) in Pt(S₂CS)₂²⁻ [42] are close to ν (C=S) and ν (PCS) in Pt[Ph₂PC-(S)S]₂ [17] and the rhodium(I) complexes IVA, B. Similarly ν (CS₂) and ν (C=N) reported for (Ph₃P)₂Pt(S₂CNPh) [43] are very close to ν (PCS) and ν (C=N) in VA, B.

The normal coordinate analyses of $Ni(S_2CS)_2^{2-}$ [19], $Ni(S_2C=N-CN)_2$ [20], Ni(S₂CNMe₂), [14] and Pt(S₂COMe), [21] demonstrate that although the ring vibrations v(LCL') (L and L' are coordinating atoms) in four-membered unsaturated chelate rings sometimes couple strongly with other vibrations, a strong absorption can generally be assigned to a normal mode with $\nu(C=E)$ or $\nu(C=E)$ as the main component. (CE is the exocyclic double or partial double bond). Changes in ν (CE) reflect changes in CE bond order, and are informative about bonding. Table 2A, B shows that v(CE) for the four-membered rings in IIA–VA as well as the five-membered ring in VIA and the six-membered ring in Ia, is raised by 10-20 cm⁻¹ upon substitution of Ph₃P by CO and that ν (CE) is more sensitive than the other vibrations. A more pronounced increase in ν (CE) (~30 cm^{-1}) is observed for the change in the central metal in IA and IIA. Both shifts can be accounted for by the simple valence bond formalism as shown by the resonance structures for VA (Fig. 1). Lowering the π -electron density on the metal centre (Ph₃P \rightarrow CO) or raising its oxidation state (Rh^I, $d^{8} \rightarrow$ Pt^{II}, d^{8}) raises the relative importance of resonance structure 2.

In VI-H a strong vibration at 1184 cm⁻¹ has been assigned to ν (P=O) [5]. The decrease in ν (P=O) of about 50 cm⁻¹ found in VIA, B indicates coordination via the phosphinyl oxygen (O=PPh₂).

Fig. 1. Resonance structures for (Ph3P)2Rh[Ph2PC(S)NPh] (VA).

 ν (CO) in IIB is different from the value of 1920 cm⁻¹ assigned before to the same complex by O'Connor [1]. The values of ν (CO) in IB and IIB are comparable to those found in (CO)(Ph₃P)Rh(S₂PR₂) (R = OPh, ν (CO) = 1980 cm⁻¹; R = Cy, ν (CO) = 1972 cm⁻¹) [22].

³¹P NMR spectra

Assignment. Table 4 summarizes the ${}^{31}P{\{{}^{1}H\}}$ NMR parameters. In this table the first order parameters are given except where two magnetically inequivalent P atoms are *trans* to each other and in case of VIB where the difference in chemical shift between both P atoms is very small (for details see footnotes to Table 4).

The view that *cis*-influences on the values of δ and ${}^{1}J(M-P)$ are smaller than *trans*-influences is supported by our results [23,24]. In IA and IIA both Ph₃P groups are equivalent and coupling with 103 Rh (100% abundance; I = 1/2) results in a doublet. The effect of ring size on ${}^{1}J(Rh-P)$ and δ for IA, IIA and IB, IIB is relatively small.

In the spectrum of Va (Fig. 2) the Ph₃P group and the Ph₂P group *trans* to it show a *trans*-coupling ${}^{2}J(P_{1}-P_{3})$ of 330 Hz. In VB the *trans*-coupling $({}^{2}J(P_{1}-P_{2})$ 332 Hz) is still observed, so in Va CO replaced Ph₃P *trans* to S(P₂). The spectrum of (Ph₃P)₂Rh[Ph₂PC(S)S] in CD₂Cl₂ reveals the presence of several species, including IVA, for which the absorptions were assigned by comparison with VA. The presence of the other unidentified species probably

Fig. 2. ³¹P{¹H} NMR spectrum of (Ph₃P)₂Rh[Ph₂PC(S)NPh] (VA) in CD₂Cl₂.

mplex	No.	۷	Ph ₃ P							(/d ¹ d)/fu	Assignment
		- - - - - - - - - - - - - - - - - - -	P-trank b 1_J(Rh-P)	S-trans 6 1 J (R	(d-4	N.CI,OIra	(d- sii	:	1 J(Rh-P)		
A, S - Me2 A, Rh N h ₃ P' S - Me2	11 11	Ph ₃ P CO		-41,4 36,5	170						
^А , ⁵ Р _{Н3} Р, ⁵ , NMe ₂	11 V 11 B	Ph ₃ P CO		-45.9 -40.3	177 158						
Ph A`Rh´N≻NMe₂ Ph₃P´S	8111 V111	Ph ₃ P CO		-41.3	182	-55,8 -46,0	182 156			74	² J(P(1)—P(2))ci
Ph2.	VVI	d a _E ng	-31,7 147	-41,1	165			+3.4(Ph2)	117		² J(P(1)—P(2))c ² J(P(2)—P(3))c ² J(P(1)—P(3))f
,ah、Ys Bh-P、S		1									

•

Ŭ ^{Ph} 3 ^P `S ^{NPh} VB	~ U	ћз ^{р b} со с		148 136	-41.5	164			4 7,8(PPh2)	102	332	² J(P(1)—P(3))trans ² J(P(1)—P(3))trans
<i>@</i> Α _{`R} , ^{ΡΡh} 3	e 0	4 ₆ 4	-29,2 -26,6	143			-45,9	196			38	² J(P(1)P(2))cis
() Ph ₃ P, _A , ^{0-P0} () A, S, J _{NPh} , VI () A, S, J _{NPh} , VI K⁺SC(S)PPh ₂ HN(Ph)C(S)PPh ₂		h3P 30 d			-40.9 35.6	170	- 54,8	202	28,6(0PPh2) 33,1 (OPPh2) 40,2(PPh; -17,3(PPh;	3(2J(Rh-P)) ((¹ ⁻)/(Rh-P)) (¹ ⁻)		2J(P(1)-P(2))ci# 3J(P(2)-P(3))) 3J(P(2)-P(3))

•

369

.

-

·

-

.

Fig. 3. ³¹P{^IH} NMR spectrum of (Ph₃P)₂Rh[Ph₂P(O)C(S)NPh] (VIA) in CD₂Cl₂.

explains the low molecular weight observed in CH_2Cl_2 (Table 1). Although the chemical shift values of IVB are in good agreement with those of VB the lines are broadened and no *trans*-coupling is observed.

VIA (Fig. 3) shows a ${}^{2}J(Rh-O-P_{3})$ and a ${}^{3}J(P_{2}-Rh-O-P_{3})$ coupling. No couplings of this type have been reported before. They are in accord with coordination via the O atom of the phosphinyl group. The values of δ -54.8 ppm and ${}^{1}J(Rh-P)$ 202 Hz are assigned to Ph₃P trans to O, in agreement with assignments made for (Ph₃P)₂RhO₂CORh(PPh₃)₃ [25]. For this P-atom (P(1)) no ${}^{3}J(P-Rh-O-P_{3})$ is observed. The preservation of ${}^{3}J(P_{2}-Rh-O-P_{3})$ in VIB suggests that in VIA P(1) trans to O is substituted by CO.

cis-Influence of Ph₃P and CO. For all P atoms coordinated to rhodium(I) an upfield shift and a decrease in ¹J(Rh-P) is observed upon replacement of Ph₃P by CO: a cis-influence. The magnitude of the changes in $\delta(\Delta\delta)$ and ¹J(Rh-P) (ΔJ) seems almost exclusively dependent on the nature of the trans-atom. For (IA, B), (IIA, B) and (VIA, B) with P trans to S $\Delta\delta \sim +5.3$ ppm and $\Delta J \sim -19$ Hz are found (Table 4). $\Delta\delta$ (+1.4 ppm) and ΔJ (-12 Hz) for VA, B suggest the difference in cis-influence between Ph₃P and CO to be smaller when P is trans than when S is trans. If the upfield shift upon replacement of cis-Ph₃P by CO is general the Ph₃P group at δ -46.0 ppm in IIIB must correspond with that at δ -55.8 ppm in IIIA. The observed $\Delta\delta$ (+9.8 ppm) and ΔJ (-26 Hz) are clearly different from those observed for Ph₃P trans to S. So we conclude that CO replaces Ph₃P trans to S in IIIA. A value of $\Delta\delta$ and ΔJ for P trans to O can be obtained by comparing (Ph₃P)₂RhO₂CORh(PPh₃)₃ [25] and RhCO(acac)PPh₃

Fig. 4. The difference in *cis*-influence between CO and PPh3 on ${}^{1}J(Rh-P)$ and δ (ppm) in square planar A(Ph3P)Rh(L-L') (A = CO, Ph3P) as modified by the *trans*-atom. P *trans* (VA, B); S *trans* (IA, B), (IIA, B), (VIA, B); N *trans* (IIIA, B); O *trans*: see text.

[26] ($\Delta\delta$ +7.6 ppm; ΔJ -23 Hz). As shown in Fig. 4 the relation between $\Delta\delta$ and ΔJ is roughly linear. The non-chelate complexes RhClA(PPh₃)₂ (A = PPh₃ or CO) have been included. Although there is no obvious interpretation of the effect, it can be used in structural assignment, as above.

trans-Influence on ${}^{1}J(Rh-P)$. On comparing ${}^{1}J(Rh-P)$ within one bis-phosphine complex $(Ph_{3}P)_{2}Rh(L-L')$ with $L \neq L'$ an order of increasing trans-influence on ${}^{1}J(Rh-P)$ can be obtained from Table 4: O < NPh, S < PPh₂. The small differences between IA, B and IIA, B and between RhCl(PPh_{3})_{3} and $(Ph_{3}P)_{2}Rh-[Ph_{2}PC(S)NPh]$ suggest the effect of ring-size and ring-strain to be small, so comparison with non-chelate rhodium(I) complexes seems meaningfull. By comparing ${}^{1}J(Rh-P)$ in complexes in which only the atom trans to Ph_{3}P has been changed, a more complete trans-influence series is obtained: O, Cl, Br, I < NPh, S < CO, PPh_2, PPh_3. For this series in addition to the values in Table 4 also the values of ${}^{1}J(Rh-P)$ in RhX(PPh_3)_3 (X = Cl, Br, I) [28], Rh(CO)_2Cl(PPh_3), Rh(CO)(acac)(PPh_3) [26] and (Ph_3P)_2RhO_2CORh(PPh_3)_3 [25] have been used. The sequence found is in accordance with that for square planar platinum(II) complexes [27].

The generally accepted view is that ${}^{1}J(M-P)$ arises almost entirely from the Fermi-contact interaction [23,27] and the change in the total MO bond order between the s-orbitals on the coupled atoms $P'(s_{M}s_{P})$ is mainly responsible for the changes in ${}^{1}J(M-P)$ induced by various *trans*-ligands [23,29]. Using a localised MO description, an increase in $P'(s_{M}s_{P})$ can arise from an increase in the

s-character of the metal hybride orbital as well as increasing covalency in the M-P σ -bond [27,29]. Both have been shown to give a stronger bond [30], so the magnitude of ¹J(Rh-P) can be used as a measure of the strength of the Rh-P bond. In IIIA the equal value of ¹J(Rh-P) for P trans to S and NPh probably indicates a very similar demand for the Rh hybride σ -orbital by both donor atoms.

Chemical shift ${}^{1}J(Rh-P)$ for PPh_{2} . The PPh₂ group in IV and V-H undergoes a remarkable upfield shift upon coordination (Table 4). Generally in alkyl- and aryl-phosphine-rhodium(I) and -rhodium(III) complexes a downfield coordination shift is observed [23, 31]. The upfield coordination shift in the fourmembered Rh-P-C-S ring is probably related to the effect reported recently by Garrou [32], who showed that a P atom in a four-membered chelate ring is shifted upfield (+12 to +80 ppm, positive ring contribution) relative to a comparable P-atom not incorporated into a four-membered ring.

The ring-strain in IVA and VA, as evidenced by the crystal structure of Ni-(Cy₂PC(S)S]₂ [34,35], results in a considerable smaller value of ¹J(Rh-P) for PPh₂ then for PPh₃ trans to it. A similar lowering of ¹J(M-P) is found in the four-membered rings in trans-PtCl[P(t-Bu)₂Ph][OC₆H₄P(t-Bu)₂] [32] and cis-Pt(Ph)₂(Ph₂PCH₂PPh₂) [33].

C. Spectra and structures of the platinum(II) complexes

Table 5 summarizes the IR and ¹H NMR parameters obtained for VII and VIII The values of v(Pt-H), $\tau(Pt-H)$ and ¹J(Pt-H) of VIII are in accord with those observed for trans-(Ph₃P)₂PtH(SC₆H₄Y) [36] (Y = a para-substituent) and trans-(Ph₃P)₂Pt(H)[SC(O)CH₃] [37]. For H trans to PPh₃ in VIII both v(Pt-H) and ¹J(Pt-H) are expected to be lower because of the higher trans-influence of Ph₃P compared to S [27]. In VII and VIII the assigned chelate absorptions in the IR are virtually the same as in the rhodium(I) complexes.

TABLE 5

SPECTRAL PARAMETERS OF THE P((II) COMPLEXES

I.R. frequencies in cm^{-1} , b in ppm rel, to TMS, J in Hz.

Complex	No.	IR			¹ H NMR (CD ₂ Cl ₂)
		Assignment	CsJ	CH ₂ Cl ₂	τ(Pt—H) (ppm)	l <i>J</i> (Pt—H) (Hz)
H, S -< ^{NMe} 2 ^{Pt} S -< ^{NMe} 2 ^{Pn} 3 ^{P′} S -< ^{NMe} 2	VII	ν(Pt—H) δ(Pt—H) ν(C:::NMe ₂)	2142m 838m 1511vs	2110(br) 825(br) 1518vs	+20.7	1081 ^a
Ph2 Ph2 Ph3P	VIII	ν(Pt—H) δ(Pt—H) ν(C=N) ν(PCS)	2106s 789m 1564vs 927m	2100(br) c 1568vs 930m	+20.0	1152 ^b

^a ²J(P-H)_{cis} 19 Hz. ^b ²J(P-H)_{cis} not observed due to line-braodening. ^c Not observed.

D. Comparison of structures

For the complexes IA—VA, on reaction with CO, substitution of PPh₃ trans to S takes place, whereas in VIA Ph₃P trans to O is substituted. The very fast replacement of Ph₃P by CO in (Ph₃P)₂Rh(L—L') and the observation of only one isomer for all complexes (CO)(Ph₃P)Rh(L—L') suggests the isomers found to be the thermodynamically most stable. In IIIB, IVB, VB as well as RhCl(CO)-(PPh₃)₂, where CO can choose between two different trans-atoms, the configuration with the least steric hindrance and with the atom or group with the lowest trans-influence (as determined from 'J(Rh—P)) in the trans-position is obtained. In VIB, in which no bulky substituent is present on one of the donor atoms (L,L'), CO is also found trans to the donor atom with the lowest transinfluence. So generally the configuration found is that in which the strongest σ -bond between rhodium(I) and CO can be formed. In IIIB where the trans-influences of both donor atoms (NPh,S) are comparable, minimalisation of steric hindrance could be decisive for the position of CO.

In VIII the configuration with the lowest steric hindrance and H trans to the atom with the lowest trans-influence is again found. The observed trans-position of both P-atoms is the same as in trans-(Ph₃P)₂PtH(A), which results from oxidative addition of the weak acid HA to Pt(PPh₃)_n (n = 3, 4) [36-38, 40].

In VIA,B no S,NPh-coordination is observed as in IIIA, B, and there is an unusual coordination via the oxygen of a phosphine oxide group stabilised by the chelate effect. The only well characterised R_3PO complex of rhodium(I) reported previously was *cis*-RhCl(CO)₂(OPCy₃) [39].

Acknowledgement

We thank Prof. Dr. Ir. J.J. Steggerda and Dr. H.L.M. van Gaal for their continuous interest and useful discussions, Mr. P.J.J. Koonen for preforming C, H, N analyses, Mr. H.H.K. Brinkhof for recording some of the ¹H NMR spectra, Mr. J.W.M. van Kessel for recording the ³¹P NMR spectra, and Mr. H.P.M.N. Ambrosius for experimental help. The investigations were supported in part by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organisation of Pure Research (ZWO).

References

- 1 C. O'Connor, J.D. Gilbert and G. Wilkinson, J. Chem. Soc. A, (1969) 84.
- 2 J.E. Oliver, S.C. Chang, R.T. Brown, J.B. Stokes and A.B. Borkovec, J. Med. Chem., 15 (1972) 315.
- 3 W. Walter and K.P. Ruess, Chem. Ber., 102 (1969) 2640.
- 4 K. Issleib and G.H. Harzfeld, Chem. Ber., 97 (1964) 3430.
- 5 I. Ojima, K. Akiba and N. Inamoto, Bull. Chem. Soc. Japan, 42 (1969) 2975.
- 6 J.A. Osborn and G. Wilkinson, Inorg. Synth., 10 (1967) 67.
- 7 F.R. Hartley, Organometal. Chem. Rev. A, 6 (1970) 119.
- 8 R. Kramolowsky, Angew. Chem., 8 (1969) 202.
- 9 D.M. Roundhill, Inorg. Chem., 9 (1970) 254.
- 10 S.D. Robinson and M.F. Uttley, Chem. Commun., (1971) 1315.
- 11 K.R. Laing, S.D. Robinson and M.F. Utley, J. Chem. Soc. Dalton, (1974) 1207.
- 12 W.R. Dively, Ger. Offen., 2, 721, 821; Chem. Abstr., 82 (1975) 97713p.
- 13 A.W. Gal, A.F.M.J. van der Ploeg, F.A. Vollenbroek and W. Bosman, J. Organometal. Chem., 66 (1975) 123.
- 14 K.A. Jensen, B.M. Dahl, P.H. Nielsen and G. Borch, Acta Chem. Scand., 26 (1972) 2241.

- 15 W.P. Bosman and A.W. Gal, Crystl. Struct. Commun., 4 (1975) 465.
- 16 W.P. Bosman and A.W. Gal, Cryst. Struct. Commun., 5 (1976) 703.
- 17 S.N. Olafsson, Thesis, Hamburg, 1973.
- 18 P. August, Thesis, Hamburg, 1973.
- 19 A. Cormier, K. Nakamoto, P. Crystophliemk and A. Muller, Spectrochim. Acta, 30A (1974) 1059.
- 20 M. Lakshimi, P.B. Rao and U. Agarwala, Inorg. Chim. Acta, 5 (1971) 354.
- 21 R. Mattes and G. Pauleickhoff, Spectrochim, Acta, 30A (1974) 386.
- 22 F. Faraone, J. Chem. Soc. Dalton, (1975) 541.
- 23 J.F. Nixon and A. Pidcock, Ann. Rev. NMR Spectr., 2 (1969) 345.
- 24 C.A. Tolman, P.Z. Meakin, D.L. Lindner and J.P. Jesson, J. Amer. Chem. Soc., 96 (1974) 2762.
- 25 S. Krogsrud, S. Komiga, T. Ito, J.A. Ibers and A. Yamamoto, Inorg. Chem., 15 (1976) 2798.
- 26 P.E. Garrou and G.E. Hartwell, Inorg. Chem., 15 (1976) 646.
- 27 T.G. Appleton, H.C. Clarck, L.E. Manzer, Coord. Chem. Rev., 10 (1973) 335.
- 28 T.H. Brown and P.J. Green, J. Amer. Chem. Soc., 92 (1970) 2359.
- 29 F.H. Allen, A. Pidcock, and C.R. Waterhouse, J. Chem. Soc. A (1970) 2087.
- 30 S.S. Zumdahl and R.S. Drago, J. Amer. Chem. Soc., 92 (1968) 6669.
- 31 B.E. Mann, C. Masters, B.L. Shaw, R.M. Slade and R.E. Stainbank, Inorg. Nucl. Chem. Lett., 7 (1971) 881.
- 32 G.E. Garrou, Inorg. Chem., (1975) 1435.
- 33 P.S. Braterman, R.J. Cross, L. Majlović-Muir, K.W. Muir and G.B. Young, J. Organometal. Chem., 84 (1975) C40.
- 34 J. Kopf, R. Lenck, S.N. Olafsson and R. Kramolowsky, Angew. Chem., 88 (1976) 811.
- 35 R. Lenck, Thesis Hamburg, 1973.
- 36 A.E. Keskinen and C.V. Senoff, J. Organometal. Chem., 37 (1972) 201.
- 37 D.M. Roundhill, P.B. Tripathy and B.W. Renoe, Inorg. Chem., 10 (1971) 727.
- 38 R. Ugo, G. La Monica, S. Cenini, A. Segre and F. Conti, J. Chem. Soc. A, (1971) 522.
- 39 G. Bandoli, D.A. Clemente, G. Deganello, G. Carturan, P. Uguagliati and U. Belluco, J. Organometal. Chem., 71 (1974) 125.
- 40 A.F. Clemmit and F. Glocking, J. Chem. Soc. A, (1969) 2163.
- 41 R.H. Holm and M.J. O'Connor, Prog. Inorg. Chem., (1970) 324.
- 42 J.P. Fackler, Jr., and D. Coucouvanis, J. Amer. Chem. Soc., 88 (1966) 3913.
- 43 F.L. Bowden, R. Giles and R.N. Haszeldine, J. Chem. Soc. Chem. Commun., (1974) 578.